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3 AFIT/GA/ENY/90D-8

Abstract

1Averaged equations of motion were numerically
* integrated over a time span of ten Earth years for various

inclinations, eccentricities, and perigee heights. Each

Sorbit (i.e. set of initial conditions) produced a standard

deviation of the variations in eccentricity (SDE) and

I inclination (SDI). These were calculated using a polynomial

3 approximation to the variations. Surface plots of SDI & SDE

vs the initial conditions are then examined to ascertain the

critical inclinations.

xi



I

3 NUMERICAL ANALYSIS OF CRITICAL INCLINATIONS ABOUT THE PLANET

MARS

I. Introduction

Satellites are placed in a variety of orbits, usually

3 determined by the mission requirements of the satellite

payload. For instance, typical planetary mapping missions

Irequire low, altitude, high inclination, and nearly circular
orbits. Conversely, communication relay satellites usually

occupy extremely high altitude and near zero inclination

orbits. One such satellite is the commercial Intelsat

satellite in Earth geosynchronous orbit. The basic

Keplerian two body equations are used to find an orbit that

meets the general requirements such as coverage, refresh

rate, etc. However, various gravitational, atmospheric, and

other effects tend to perturb the orbit from its initial

conditions. These effects can be relatively large and

primarily affect the inclination and eccentricity of an

orbit.

The amplitudes of these variations are primarily

dependent on the orbit's initial eccentricity and

inclination. Higher initial eccentricities show a direct

correla ion to larger variations. The effect of initial

inclination on the variations is more complex. Those

initial inclinations that are determined to cause large

II



variations in eccentricity and inclination are termed

critical inclinations. Figures 1 & 2 illustrate the

variations in eccentricity and inclination for an example

orbit.
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Figure 1. Example Inclination vs Time Plot: Rp= 6500 km

For the majority of satellite missions, such as Earth

communication satellites, it is desirable to minimize the

perturbations. The initial orbits are selected to meet

mission requirements and the satellites are station kept in

those orbits by thrusters. These thrusters require fuel,

which is often the limiting factor of satellite lifetime.

An alternate approach seeks to select orbit initial

2



I

conditions to maximize the perturbations. Such an orbit

could be used as a transfer orbit to save maneuvering fuel.

However, such a transfer often takes much longer than

mission constraints allow.

I
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i Figure 2. Example Eccentricity vs Time Plot: RP= 6500 km

I Whether the designer seeks to minimize or maximize the

i perturbations, the locations of the critical inclinations

are required. Therefore, the evolution of the selected

I orbit over the lifetime of the satellite must be examined.

Both an analytic and numerical approach were applied in

I finding the critical inclinations.

i Both approaches start with the same governing equations

3

K. 0 ->
tI



of motion, the Lagrange Planetary Equations in their

disturbing function form. The disturbing function accounted

for only the predominate gravitational perturbations of the

Mar's equatorial bulge (J2) and solar third body

perturbations. The Mars J2 zonal harmonic is two orders of

magnitude larger than the other harmonics and is twice as

large as the Earths. This simplified the equations of

motion to permit an analytical analysis and reduced the

integration time for the numeric approach. The analytic

analysis represents the limiting case of variations over an

infinite time span. Therefore, a full numerical analysis

was required to find intermediate critical inclinations.

The numerical approach integrated orbits for six

different perigee heights, over a full range of initial

eccentricities and inclinations. This involved the

integration of over 56,000 orbits for a ten Earth year time

span. The integration of such a large number of orbits was

necessary to provide sufficient information for the

determination of the critical inclinations. However, the

shear amount of data precludes analysis of each individual

orbit. Therefore, an approach involving the determination

of a figure of merit for each orbit was used to reduce the

amount of data to a manageable size. The standard

deviations in eccentricity and inclination were selected as

the figures of merit and calculated for each orbit. Three-

4



dimensional surface plots of these deviations vs the initial

eccentricities and inclinations were then used to determine

the critical inclinations. The affect of using linear,

quadratic, and cubic data fits in calculating the standard

deviations was also examined. Figures 1 & 2 show a cubic

fit to the data.

5



II. Analytical Development

Reference Frame

A Mars centered reference frame and classical elements were

used describe the motion of the satellite.

MARS A
SPIN

AXIS PERICENTER

SATELLITE

1,I APPARENT

SUN

ORBIT

MARS

EQUATORIAL I

PLANE a-

- ASCENDING NODE

Figure 3. Planet (Mars) Centered Reference Frame

Satellite orbital elements are defined as follows:

r = satellite radius vector

i = inclination of satellite orbit

n = argument of ascending node for satellite orbit

w= argument of periapsis for satellite orbit

0 = satellite central angle

By referencing everything to a Mars centered coordinate

frame, the Sun appears to orbit Mars in this reference frame.

6



Therefore, the motion of the Sun with respect to Mars can be

described by a set of orbital elements as if the Sun was orbiting

Mars. The Sun's pseudo orbital elements are defined as follows:

rs = Sun radius vector

0s = Sun central angle

Is = inclination of Sun orbit

A = right ascension of the Sun

L = Planet centered latitude of the Sun

Equations of Motion

For a basic two body problem of a satellite orbiting Mars,

the motion can be described by the six classical orbital elements

that are constant in the inertial frame. Once these are known

for some epoch time, the position and velocity of the satellite

can be determined for any other time using the two body

equations. In reality, the two body elements are not constant.

They change with time due to the perturbative effects of drag,

Mars geopotential, Sun third body effects, etc. Since these

changes are relatively slow, the Keplerian elements can be used

to describe the satellite motion when combined with equations of

variation. The equations of variation describe the change of the

keplerian elements with time, based upon the perturbations. This

method is known as variation of parameters. The Lagrange

disturbing function approach was used for the equations of

variation.

In the Lagrange approach, the acceleration of the satellite

is written as the gradient of the gravitational potentials.

7



Note, this is only valid for conservative forces such as gravity.

d2F - V(RM + RS )

dt
2

V gradient operator

= Mars gravity potential

Rs = Sun gravity potential

Through Canonical transformations, the two body motion may

be eliminated and the Lagrange equations for the perturbing

motion formed. The Lagrange Planetary Equations in their

disturbing function form (4,476-483):

e = eccentricity of satellite orbit

i = inclination of satellite orbit

b = semi-minor axis of satellite orbit

M = Mean Anomaly of satellite orbit

n = mean motion of satellite

= gravitational parameter

(4.2828287E04 Kg3/sec 2 for Mars)

(1.3271544Ell Kg3/sec2 for Sun)

R = the disturbing function

8



de b 2 aR b aR
dt na4e aM na3e aw

di 1 BR cos i BR
dt nab sini aQ nab sini 3&

da 2 aR
dt na aM

dQ 1 aR
dt nab sini i (2)

d_ cos i aR b BR
dt nab sini ai na 3 e Be

dM n 2 aR b 2 BR
dt na Ba na 4e Be

where b= a l--e 2  & n=
a
3

Only the Mars J and Sun third body disturbing potentials

were considered. Their development followed that of Breakwell's

Investigation of High Eccentricity Orbits About Mars (5) and

Durand's June 1989 MS Thesis (7).

9



Mars Disturbing Function

The first non-zero zonal harmonic is the J2 term that

accounts for the equatorial bulge. This is the predominate

geopotential term for most planets and the only harmonic examined

in both the analytic and numerical developments. The J2

disturbing function has been shown to be

Rm - PmJ2 R (1 - 3 sin 2 8) (3)2r 3

where Re is the Mars equatorial radius and 6 is the declination.

A transformation of the declination to a form containing the true

anomaly and the argument of periapsis was accomplished using

spherical geometry. From the spherical geometry

sin8 = sini sina

= sini sin(it - (f + w)) (4)

= sini sin(f + 6)

Squaring this equation yields

sin28 = sin2 i sin2 (f + W)
1 (5)

- sin 2 i [1 - cos2 (f + w)]
2

10
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Figure 4. Spherical Trigonometry of an Orbit

Figure 5. Geometry of the Orbital Plane



The transformed disturbing function is thus

Rn mJ 2 R 1-1f 1i~ + 3 sin2.i cos2(f +r t 2) (6)2 1 3 [ 2 2

Averaging of the Mars Disturbing Function

The mean anomaly was averaged out of the Mars disturbing

function by integrating the function over one orbit and dividing

by the change in mean anomaly (2r).

RM -1 f 27t Rm dM (7)

The integration was accomplished using Hansen's Coefficients (2).

A brief description and derivation of this is included in

Appendix A. Substituting in the disturbing function yields

RM _ - 0o2 -I.2r (1 - 23 sin idM

(8)

+ 2i 3ILmJ2R4 sin2 i cos2(f+) dM

Let

2a3  -
2  T  ( dM (9)

2
3IMmJ2Re sni{ o2i r) s

B - cos2_(_f+_ dM
4a 3  S it 0 a

12



Using trigonometry, B was transformed to

3 pmTR' 12' fn r)-3

e.in {f ~- (cos2f cos2w - sin2f sin2c) dMJ

B LJ2R sin 2 i (Cos2 W) -L (I:\ o~fd4 a 3  27 1f21 \a)-csf~

sin~w f 21rL~ sin2f dM)2 it J a/

(10)

By employing Hansen's coefficients from Appendix A

2t f1 ()3 dM~ = X)' 0  1 (-e 2) -3/2

--L- f2  ()3 sin2f cdM =0 (1

2n~ f2T  Y~ cos2f ciM XJ'=0

From this "IB" is found to equal zero. Therefore the averaged

disturbing function is equal to the "A"l equation.

- ~ ~,22
'TRn~e 1- -si) (12)

2 a3 1- 23/ 2

13



I

Solar Disturbing Function

The third body effects of the Sun on the satellite motion

I may be derived from Newton's basic Law of Universal Gravitation.

F,= -Gm [ 3-r 1  + 3
r21 -r3 1

m I  + m 3,_2 Gin2  3- 1 3 _

112 r 32

d 2E - rm m<
I t i LA t A 1  (14)

i_ F 2  - G --m 2 + '3 '31

I/t m 112 .r32  j

I
& d2  d d3

dt 2  dt 2  dt 2

d d 2 -GH-r21 + M + G + (15)

1 2 3 132 i

r ~ F : d2dt2  - d :

I2
2I n

* 14



I
Since m2 >> ml, let m2 + ml = m2

dt 2 21 Sr 2  S 3 (16)

I
With a change of variables to the notation of figure 3.

r2 l - r1 23 32 = F11 (17)

r1= r - r

I

The acceleration of the satellite is

d 2 - - - P-m - - r F + = V(RM + R s ) (18)
d t 2  3  r 1 3 31

The first term of the above equation is the Mars and satellite

two body problem. The second term is the acceleration due to the

Sun third body effects. As shown above, the acceleration of the

satellite can be expressed as the gradient of the gravitational

potentials of the Sun and Mars. Therefore, the gradient of the

Sun's potential is

S r r (19)VRS S -' r 1l3  3

by finding the equation that satisfies this condition, the Sun's

gravitational potential is found to be

15



I

R S .L1-S (20)

Now this must be put in the form of a disturbing function to the

Mars-satellite two body problem.

rs-r

= =: IFS- = (E-- (- F)"(Ei-i

p2 = - 2r + r'rP .5 S S(21)

I p2 =rs_2rrs cosB + r2

where B-
--_ rr 8

By factoring out rs2 and taking the square root

p = -1 +cosB 1/2 - ( (22)

s

I Substituting in, the Mars gravitational potential becomes'II 1 2 / (3
R s 1 +2 2r cosB rcosB]r r -r r)

* 16

I



Using the binomial expansion

1 + (2r Cos)B 2 2 COSB
2 rs n r

8~2 r~ 2 J
rs S =O rs (24)

The higher order terms above (r/rs)2 can be neglected since

rs >>> r. The above series is approximated as

r 2  cos B = 1 - -: -2cosB) 4r 2 Cos2B (25)
r2 S 2r 2 rs 8 r2

The Sun gravitational potential becomes

Rs L [ r2 3r 2

R - + - Cos 2 B
r s  2 2r'

1 (26)

- S K + 2 (3cos 2 B - 1)
:4 2

The Suns gravitational potential at Mars is equal to the two body

term plus the disturbing function.

Rs ±--f + RS (27)
rs

17



I
Therefore, the solar disturbing function is

R 24 [3cos 2 - 1]

(28)

2rs[ rr SI
The radial vectors are now transformed to the orbital

elements of the satellite and Sun, defined in figure (1). For

1 ease of notation, the sin and cos functions will be abbreviated

using S = sin and C = cos. From the physical geometry, the unit

I vectors in the radial satellite and Sun directions are

I Ce - soCiSo'
er~ s - SC e + CO Cis or r 1e

1 j (29)
CACLI = CLSs rs 
SI 8

I The dot product of these unit vectors is

I er"es r

rr 3

j-CQCoCACL - SQCISOCACL + SOCOCLSA + COCISOCLSA + SiSSL (30)

= CoCL(CCA + SoSA) + CiSeCL(COSA - SOCA) + SSeSL

= COCLC(O - A) + CISOCLS(O - A) + SiSeSL

Ii 18



Substituting into the solar disturbing function results in

Re - (3 [CeCLClaA) + CiSeCLS(Q-A) + SiSeSL] 2 
- (31)

Expanding squared term yields

S r {3[KIC 2 + 2K 2 COSe + K 3 S6
2 ] - 1} (32)-2Irs

Where

K1 = (CLC(- A))2

K2 = SLCLSiC(Q - A) - CCiS(0 - A) C( A) (33)

K3 = (CICLS(Q-A) - SLSi)2

The disturbing function is now written in terns of the satellites

true anomaly using

c2= ( + C2 e)

(34)S02 = C20 q)
2

2SOC9 =S2

I
The final form of the solar disturbing function isI

R5 = -A 1 C2(f+.)) + 3A 2 S 2 ( ) + -A 3 (35)
2r 12 2

I 19



I Where

IA 2 = K2 (36)

A3  K(, + K3~

I2



I
Averaging the Solar Disturbing Function

Just as with the Mars gravitational disturbing function, the

I fast periodic mean anomaly can be averaged out of the solar

Idisturbing function. This is accomplished by integrating the

disturbing function with respect to the mean anomaly over one

orbit and dividing by the total change in mean anomaly (2v).

Thus the average solar disturbing function isi
R 2- Rs d( (37)

Before integrating, the true anomaly must be separated from the

argument of periapsis w. Using the trigonometric relations

C2(f-c.) - Cf 2 !f2
(38)Isz(f~) -S 2 fCZ. + C2 fS2 .

The solar disturbing function may now be written as

RS c.,l 2 1 C2f2 -3 As 2fs2w + 3AS 2 fCc , +

+ 3A 2 C2fS 2 . ' 3 A3

(39)

S{AC 3AS 2 ) C2A + (3A 2 C2  - -A S +

1+ !A3 - }

II 21



Upon rearranging to a form useful for employing Hansen's

Coefficients

RS=- s 3 { AIC 2,. + 3A 2 S 2.)( C2f
2 S H(40)

+ (3A 2c 2~ Al l S 2 .~(I a 2 (A 3  a )-)

Employing Hansen's coefficients (Appendix A) to average out the

Mean Anomaly using

122 C2t dM = X02,2 = 5e 2

2 ,t o a 2

( 2S dM = 0 (41)

1 2 : 0 r( 2 d X02,0 = 1 +  2

2 a 2

After substitution, the averaged solar disturbing function

becomes

Rs -L2a2  + 3A 2 S 2  + - 1)(31e2) }
(42)

a 152 2AlC2 + 15eA 2 S2 (, + (2 + 3e2)(A 3 - 1) }
43 122

22



Substituting in the "A" variables results in

R- = L a 2 15 2[C2 2)2
RS= I.L _2 {(Q-[ ) - (CiCLS(O-A) SLSi)C(

+ 15e2{CLSLSiCQA) - CLIC S }s 2 o (43)

~2 [ I [ CL2_^ C2}
+ (2 + 3e 2[ (Q-CA) + (Ci CLS(O-A) SLSi)1-1

However, this form still contains periodic effects due to

the motion of the Sun. These may be averaged out when the mean

motion of the Sun is greater than the rate of change of either w

or 2. To find the condition under which this holds, use the

Lagrange Planetary Equations to get the changes in w and n. Use

only the J2 portion of the disturbing function (Rm) to simplify

the comparison. This is valid since, the affect of the J2

disturbing function is much greater than the solar effects. The

necessary partial of the Mars disturbing function are

2 2aR, 3n 2J2R sini cosi
di 2 (l-e 2 ) 3/ 2

(44)

aRM _ 3n 2J RR2e3 2
2 ( 1 - 1 sin iiae 2(1-e 2 )5 /2  2

23



The rates of change of Q and w are then

d - 3 nJ 2R i
dt 2a 2 (l-e 2 ) 2

(45)
2

d- 3fnJ 2Re ( R 3 sin 2i + cos2i\

dt 2a 2 (l-e 2 ) 2 2

By comparing the magnitudes of these rates of change

- - J2 Re 9 M (46)
dt dt a/l 2 (1-e2)2

Therefore, the averaging of the solar motion is valid when

j2 2 1/2

> (47)a7 /2 (l-e2)2

This occurs for high eccentricity orbits with the lower bound of

eccentricity decreasing with increasing periapsis radius.

The majority of the orbits analyzed in the numerical section fall

into this category.

After several change of variables and assuming the Sun's

pseudo orbit to be circular, the time varying solar terms can be

removed. The slowly varying solar disturbing function becomes

24



n 2 I3

+ 1(1 _ 3 S C2)(3c_1)} + 15 e2 {1S2 (+C2) + 8)4 2 cls(c14 41 1c0+2 Q+-(i (48)+ S 2 ( 1 3 5 2 , C
I CSIS (CQ 2.,+Ca 2.) + S(1 SIC

2 e 4 1, [II~( 2 U.2w - C2 CI+2(j) - 2sISCI, (CU- 2 . -cQ+ 2c91

where the mean motion of the Sun is

n : (49)
as

25



The Combined Mars and Solar Disturbing~ Function

The mean anomaly and the periodic effects of the Sun's

motion have been successfully averaged out of the disturbing

functions, resulting in

R= Rm + RS (50)

2

2a 3 (1-e 2 ) 3/2 2 )

a2  213 2 s~ 2  3
+ 4 - [2+.3e] - S crs+s-scrScS

+1 3 2 )(C2_1)} + 15 2 1is (,+c~ C2  (51)

CI-SICISI1 (C0+2.+CQ- 2 . I I~i

le2 { 1 CIS2(C_0_2 Ca) 1 1 S8'CI.(CC - CCO+.)9

26



Determination of Critical Inclinations by Analytic Methods

The long period variations in eccentricity and inclination

may now be obtained chrough use of Hamiltonian mechanics and

canonical transformations. Detailed explanitions are in ref (5).

The transformation of the disturbing function results in an

equation with six divisors. Eleven critical inclinations result

when these are equated to zero.

Table 1. Critical Inclinations

63.4 deg 116.6 deg

46.4 deg 106.8 deg

73.2 deg 133.6 deg

56.1 deg 111.0 deg

69.0 deg 123.9 deg

90.0 deg

These inclinations represent the limiting case for critical

inclinations and were derived with the simplification of solar

averaging. Due to the complexity of the problem, a systematic

numerical approach is necessary to ascertain the true nature of

the critical inclinations without the above simplifications.

However, the results in table (1) should roughly correspond to

any numeric results.
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III. Numerical Development and Results

The analytical development produced eleven critical

inclinations resulting from resonant situations. This

occurred when terms in the denominator of the equations of

motion went to zero, thus indicating large amplitude motion.

However, in reality these amplitudes are not infinite. They

build up over time due to the aaaitive effect of the

resonance condition. The equations of motion are still

valid and can be numerically integrated as long as the

integration time is small enough that the amplitude does not

exceed the limitations of the computer (overflow condition).

The effect of the resonance will still be visible even with

the limited integration time. The amplitude of the motion

will not go to infinity, but will be large compared to non-

resonance conditions. Therefore, a numerical approach may

be used to find the critical inclinations.

This involves integrating a sufficient number of orbits

over a range of eccentricities, inclinations, and periapsis

altitudes (initial conditions) to permit the determination

of critical inclinations.

Equations of Motion

The numerical analysis used a transformed set of the

Lagrange Planetary Equations used in the analytic analysis.

The change of variables was used to simplify the

implementation of the equations on the computer. The same
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I
3 disturbing function used in the analytic approach was used

for the numerical integration. As discussed previously, the

Imean anomaly is averaged out of the disturbing function
3 while still preserving the effects of the resonance

conditions. This averaging out of the mean anomaly eases

3 the numerical integration by simplifying the equations of

motion. The integration time is also greatly reduced. A

step size of days instead of minutes can be used.

Since the mean anomaly was averaged out and the -rimary

interest was the slow variable changes, such as inclination

and eccentricity, the dM/dt equation was not needed.

Furthermore, the semi-major axis remains constant (da/dt=0)

since the mean anomaly was averaged out of the disturbing

function (aR/aM=O). This reduced the number of relevant

Lagrange Equations to the following four:

de b 2 aR b aR
dt na4e aM na e o

5 di 1 aR+ cosi aR
dt nab sini ( nab sini 

d - 1 aR
dt nab sin/ ai (52)

dw cosi aR b aR
dt nab sin! ai na3e ae

where b = al-e 2  & n= a-3a
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U
3 A change of variables from the classical (a,e,i,O,w,M)

to the new variables (a,h,k,Q,IN,i) was then used to

Ifacilitate the integration.
3 h = e sino

k = e cosI(53)

i The transformation to the h and k variables avoids the

singularities due to the classical variable set (a,e,i,O,M).

3 The transformed equations are non-singular for zero

eccentricity, but singular for zero inclination. The

stroboscopic mean node (IN) transformation permits the

averaging of the motion due to the fast mean anomaly

variable, while maintaining the longer term resonance

effects as discussed in the analytic section. The following

derivatives are required in the transformation:

aR aR ah aR ak k aR aR
dw a h a ak w k)ha ak (54)

R aR ah aR ak h aR k aR
_ T + - _h

ae ah ae akae eah e Ok
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I

I dh ah de + 8h d _ h de + kdG
dt ae dt aw dt e dt dt

dh h( b )k- - h- )
dt e na-3 e ah

I k_ cosi_ aR + b (h R + k 8R\
nab sini -i na 3e e Oh e ak

dh b aR k cos i aR
dt na 3 ak nab sini 8i

I
dk _k de + ak d _ k de -h d
dt aedt &, dt e dt dt

dk _ b (k- - h a-
dt e na 3 e) 8h - (k6

1(56)

-nab sin/ i na 3e e ah e R\1

dk b aR cos i aR
dt na 3 ah nab sinii

The four relevant Lagrange Planetary Equations are then

transformed to the new elements.

dh b aR k coti aR
dt na 3 ak nab ai
di cot i k aR _ h OR) 1 aRdt nab ah ak nab sin/ aQ

dk b 8R + h cot i aR (57)
dt na 3 ah nab 8i

dQ 1 aR
dt nab sin i 81

where b = a l-e 2  & e = h2 + k 2

3
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Now the disturbing function must also be transformed to

the new variables (a,h,k,nIN,i).

R 3 J 2R)e 3/ - 3sin2i)2a 3 (1-h -k2) 2

+ P, a2 15,[C2C - (CiCLS ( SfSi)2](k2 - h 2 )4r1 1- [ ' ° ^ 2-(c(asA)^ L (58)

+ 30[CLSLSiC(Q-A) - CLCiC(QA)S(_A)]hk

* (2 + 3h 2 + 3k') [2LC(Q-A) + (CiCLS(_A) - SLSi -

The following four partial derivatives of this

disturbing function were then used in the transformed

Lagrange Planetary equations.

8R _ 3PmJ 2R2k ( 3 sin2i)

3k 2a 3 (1-h 2-k 2 ) 5/2 2 2

+ L a2 k {15[CLc' -A) - (CiCLS(A) - SLS ()2

4r sg

" 30[CLSLSiC(QA) - CLCiC(QA)S(o-A)] h

36k 2 (Q-A) + (CCLS(O-A) -SLSi)2] - 1]
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aR3 P.mJ2 R h 3 2

-sin

h 2 a 3 (1-h 2-k2) 5/2 2 /

+ a 2h 15~ [C'c' A) - (CiCLS(IOA) -SLS i 21(0

4.r 3L (Cl( 0

+ 3OICLSLSiC(Q-A) - CL2CiC(Q-A)S(a-A)] k

+ 6h 2 (aC -~A) + (CiCLS( -A) - SLSi)] i

aR 3 3 PLmJ2R e / sin2i

P.3 a15 (CiCLS(flA) - SLSi) (SiCLS(OA) + LCI k

4 S

+ 30[CLSLCiC(CoA) + CL2SiC(O-A)S(A)] hk

- 3 (2+3h 2 +3k 2 ) (C iCLS(-A) - SLSi) (SiC'LS(OA) + SLCI)

p (61)

P. sa a 2 r_15C2s22 2

au .3i L (0 -A)+ 2 (CiCLS(O A) -SLSi) C CLC(O A)(k h)

-30{CLSLSSI-A) 
+ CCiC2 (0OA)] hk

3 (2 3h 2 +3k 2 ) [ 2 ( A - 2 (C C L S A - S S ) C C C Q A

(62
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These partial derivatives of the disturbing function

combined with the modified Lagrange Planetary Equations were

then integrated for each set of initial orbital elements.

The full set of transformed Lagrange Planetary

equations, without the simplifications made previously, are

as follows (17,3-3):

3
I
I

i
I

I
I
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da 2 1 8R
dt na So  l N

dh - i-e 2 aR kcoti aR h R ,
dt na 2  3k na 2  -e 2  i N

di cot i (k R h aR 1 aR
dt na2 F1 ah - k s o al N

1 (R + R
2 N__ 2a

na -e 2 sin i (a N

dk _ -e 2 oR h cot i aR k V1-e 2 P/ aR
dt na2 ah na2 mT3--_e2 ai na S o  aXN

dQ_ 1 aR
d - na 2 1_-e sin i a'

dAN n dO 1 { - ( h h - -2aa
dt So  dt na 2 sk

so - cos i aR

l -e 2 sin i

where n= e= +h+ -k e

(63)

AN = stroboscopic mean node e = eccentricity

0 Greenwich hour angle a = semi-major axis

n longitude of ascending node M = mean anomaly

w argument of periapsis i = inclination

So = ratio that approximates the number

of orbits per planet revolution
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Determination of Critical Inclinations

Critical inclinations were defined as those

inclinations that produce large variations in one of the

orbital elements. This numerical approach was looking for

critical inclinations in both eccentricity and inclination.

Search Method

The search was accomplished by giving each orbit two

figures of merit. These were the standard deviation in

eccentricity and inclination. While using the standard

deviation as a search criteria for critical inclinations was

not an ideal approach, it proved to be a satisfactory method

to handle the huge quantities of data that required

processing.

Procedure

The averaged equations of motion for a satellite were

numerically integrated over a 10 Earth year period for a

given set of initial conditions. The variable initial

conditions were systematically incremented to cover the

entire spectrum of possible orbits about Mars. Initial

conditions included the following:

rp= variable periapsis radius (5000 km, 5500 km,

6000 km, 6500 km, 7000 km, 7500 km)

e eccentricity (0.4 to 0.9, A = 0.02)

i = variable inclination (0.25 to 90., A = 0.25)

= 0 longitude of the ascending node
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= 0 argument of periapsis

M = 0 mean anomaly

For each orbit (set of initial conditions), the

standard deviation of the variations in eccentricity and

inclination were calculated using a linear, quadratic, and

cubic polynomial approximation to the variations.

Two dimensional plots of the standard deviation in

eccentricity (SDE) and standard deviation in inclination

(SDI) vs inclination were generated for each initial

eccentricity value. All the SDE vs inclination and SDI vs

inclination plots were combined into three dimensional

surface plots. These surface plots were then used to

identify the critical inclinations in both eccentricity and

inclination.

Surface Plots

A total of six sets of three dimensional surface plots

were generated. Each set contains six plots of the standard

deviation in eccentricity or inclination, for a given data

fit, versus initial insertion orbit eccentricity and

inclination. Linear, quadratic, and cubic data fits were

used in determining the standard deviations.

Only the 5000 km and 7500 km periapsis radius cases

include the linear, quadratic, and cubic data fits for SDE

and SDI. These demonstrate the effect of using higher order

polynomials in computing the standard deviations. Note the
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smoothing of the features and reduction in magnitudes. The

remaining surface plots are for a cubic data fit. The other

linear and quadratic data fit plots are in Appendix B and C.

Standard Deviation in Eccentricity (SDE) Surface Plots
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Standard Deviation in Inclination (SDI) Surface Plots
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2-D Critical Inclination Plots

For each of the SDE surface plots, a numerical

procedure was used to sort the data and locate the

predominate local maximums. These form the ridges in the

surface plots and indicate the critical inclinations. Cubic

polynomials were fitted to the local maximum data and then

plotted on a two dimension graph of the initial eccentricity

vs initial inclination (orbit insertion). These are the

plots of critical inclination as a function of insertion

eccentricity and inclination. Two-dimensional contour plots

of the surfaces for a cubic data fit are also included. The

linear and quadratic data fits not included here are in

Appendix D. The features in the SDI surface plots were not

predominate enough to locate accurately and were not

plotted.

The curves for the linear, quadratic, and cubic data

fits in calculating the standard deviations were roughly

similar. As expected, some of the curves disappeared with

the higher order fits due to the decreasing magnitudes of

the standard deviations. However, the curves were also

shifted in position. They exhibited a shift to lower

eccentricities and a shift away from a dividing line of 53.3

degrees initial inclination.

Critical Inclination Curves for SDE
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IV. Conclusions and Recommendations

Critical inclinations were defined as those initial

inclinations which result in a large variation in either

eccentricity or inclination. The location of these

inclinations through numerical means was the desired goal.

To provide a bound on the problem, an analytic method

was outlined (e.g., see Breakwell ref. 5). This resulted in

eleven critical inclinations based on the simplifications of

averaging out the mean anomaly terms and averaging the

affects of the Sun.

Table 3. Critical Inclinations

63.4 deg 116.6 deg

46.4 deg 106.8 deg

73.2 deg 133.6 degI
56.1 deg 111.0 deg

I 69.0 deg 123.9 deg

90.0 deg

U However, this method didn't bring out the dependence of the

critical inclination on initial eccentricity and periapsis

height.

The numerical approach involved the integration of

orbits over a range of initial eccentricities and
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inclinations. The standard deviations in eccentricity (SDE)

and inclination (SDI), based upon a polynomial curve fit to

the data, were employed as the search parameters. The local

maximums in the surface plots of SDE and SDI vs initial

conditions indicated the resonances and thus the critical

inclinations (e.g., see figures 6-25).

The SDI plots proved to be relatively smooth and no

predominate features were discerned. Therefore, critical

inclinations for large variations in inclination were not

determined.

However, the SDE plots demonstrated numerous resonant

conditions. The curves for critical inclinations were

identified and roughly corresponded to the analytic results

(e.g., see table 1).

Experimenting with higher order polynomial curve fits,

in calculating the standard deviations, resulted in a

smooching of the surface plots as expected. The more

accurate curve fits reduced the magnitude of the deviations

and brought out the predominate resonance effects (e.g., see

figure 42). The equations for these curves indicated the

critical inclinations were a function of the initial

conditions.

A second effect of the higher degree polynomial data

fits was a shifting of the critical inclination curves.

Increasing the deqree rvf the polynomial shifted the critical

I
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curves toward decreasing eccentricity and away from a

dividing line of 53.3 degrees initial inclination. This

dividing line also corresponded to the approximate

inclination of the predominate resonance effects (e.g., see

figure 42) and the analytic critical inclination of 56.1

i degrees.

Based on these results, the numeric approach utilizing

the standard deviation as a search parameter provided a

i means of identifying the critical inclinations for large

variations in eccentricity. Furthermore, the use of higher

degree polynomial data fits in determining standard

deviations assisted in isolating the predominate resonance

effects.

* A further study could explore the shifting of the

critical inclination curves for higher degree polynomial

data fits. Non-polynomial data fits may also be explored.

I
I
i
i
I
I
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Appendix A. Hansen's Coefficients

The following is a more detailed explanation of the

I steps used in deriving the disturbing functions using

3 Hansen's Coefficients. A complete explanation of Hansen's

Coefficients is in reference (2).

i Let

x = exp(jf), y = exp(jE), z = exp(jM, j = 7T ( 6 5 )

I
where f is the true anomaly, M is the Mean anomaly, and E is

the eccentric anomaly. Hansen's coefficients are then

definedI
=o M f07 (f) Xm z, dM (66)

For p=O:

i nM =(e2)ml ( n+fl +I~1) ( m,-n-i ' 2 (67; e )e= m - +1m + F In- 1 m ne2'(67)
2= 2 2 Im+

I
where F is the hypergeometric function [1:272-277] defined

F = (a,b;c;y) = (a) n (b) , y I 1 (68)
I n=0 (C) n n!

I
One property of Hansen's Coefficients is

I
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XIn (69)

The Pochhammer symbol (a), has the following properties:

(a) 0 = 1

3 (1 n! (70)

(a) n = a (a+l) (a+2) .... (a+n-1) n = 1, 2, 3,....

3 The Pochhammer symbol and the binomial coefficient are

related by

(a) n -1 n! (-)(71)
In
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ft Derivation of Integral Terms in the Disturbing Functions

Derivation of Eqn. (11):

Ci = x- 3, 0

- 3 e 2

(I) i(2 - (72)

n= 
n 2nn! 3/2 (-1) ne

In=O n n

IRecognizing this as a binomial expansion
Xo = (1 - e2)1 (73)

5
Derivation of Eqn. (11):

Using the identity

sin2f [exp (j2f) - exp (-j2f) ] (74)

I
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1 f 2i (a)- 3 sin2f dM=

27 ( r)- [exp (j2f) - exp (-j2f) ] dM

_ [ o21t _a)-3 1 fo2l _r) -3

29 - ( exp (j2f) dM - -- exp (-j2f) dM

_ (Xo 3,2 _-Xo 3,2) = 0
29

(75)

Derivation of Eqn. (11):

Using the identity

cos2f = _ [exp (j2f) + exp (-j2f) ] (76)
2

then

1~ fo2 ( )-3 cos2f dM=

f2 l ( - [exp (j2f) exp (-j2f)] dI

1~1 f2 I- - _ exp (j2f) dM + ( exp (-j2f) dM

_ + (xJ3,2 + x ,) = x;3 , 2
2t

1 (77)

I
- -- ) 2 , (2o) 0 (78)
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Derivation of Eqn. (41):

1 f2 n ( cos2f dl =

12 2 (r) 2  [exp (j2f) + exp (-j2f) I dM

2 ! exp (j2f) dM + f -- exp (-j2f) dM

21 1-' i a2
-1-~ (X02, 2 + X02, 2) = X022

(79)

XO2 - e) 2  5 F(-L0;3;e 2

, 2 2 2

= ( 2) (10)(1) (80)

2

Derivation of Eqn. (41):

11 J 7
2 fj (a)2 sin2f dM=

f21 
(

2  [exp (j2f) - exp (-j2f)] dM

2 ! exp (j2f) dM - f- exp (-j2f) dM
2 a

= (x'2  - x.2,- 2) = 0

(81)
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Derivation of Eqn. (41):

1f 27t (_1:)2 df=X2,

= (eO ( 3 F(- ~21e 2)

3 (82)

(1),

1 3 2

2
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Appendix B. SDE Surface Plots
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Figure 49. Standard Deviation in Eccentricity vs
Inclination and Eccentricity: Periapse Radius = 7000 Kmn,
Linear Data Fit
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Figure 50. Standard Deviation in Eccentricity vs
Inclination and Eccentricity: Periapse Radius = 7000 Kin,
Quadratic Data Fit
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Appendix C. SDI Surface Plots
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Figure 52. Standard Deviation in Inclination vs Inclination
and Eccentricity: Periapse Radius = 5500 Kmn, Quadratic Data
Fit
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Figure 54. Standard Deviation in Inclination vs Inclination

Fit
and Eccentricity: Periapse Radius = 6000 Kmn, Quadratic Data
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Figure 56. Standard Deviation in Inclination vs Inclination
and Eccentricity: Periapse Radius =6500 Kmn, Quadratic Data
Fit

92



RADIUS OP PRIAPSIS =7000 '>1'

-j-

~Cn

Figure 57. Standard Deviation in Inclination vs Inclination
and Eccentricity: Periapse Radius = 7000 Kmn, Linear Data
Fit
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Figure 58. Standard Deviation in Inclination vs Inclination
and Eccentricity: Pel iapse Radius = 7000 Kmn, Quadratic Data
Fit
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Appendix D. Critical Inclination Plots
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Figure 60. Critical Inclination Curves: Periapse Radius =
6500 km, Quadratic Data Fit
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